

1.0 – 6 GHz Ultra Low Noise Amplifier

Features

- Frequency Range: 1.0- 6 GHz
- 0.7 dB mid-band Noise Figure
- 18 dB mid band Gain
- 13dBm Nominal P1dB
- Bias current : 50mA
- 0.15-um InGaAs pHEMT Technology
- 16-Pin QFN Plastic Package : 3mmx3mmx1mm

Functional Diagram

Typical Applications

- Cellular system
- Base stations
- Applications from 1 to 6GHz in Balanced configuration
- Communication receivers and transmitters.

Description

AMT 2122092P is an Ultra Low Noise single stage Amplifier MMIC combining high gain and state of the art noise figure. No-off-chip components are needed, except for additional bypass capacitors in DC bias path for reliable operation. Matching network, DC Blocks and bypass capacitors are provided on-chip for simplification of assembly operation. The amplifier operates on Drain Bias of +5V and Gate biases of +2V & -0.4 V supply. The bias current can be tuned from 30 to 70 mA as per requirement with minor variation in performance. The LNA features 18dB mid-band gain and 0.7 dB mid-band noise figure (typical). The die is fabricated using reliable Low noise 0.15um InGaAs pHEMT process. This chip is available in low cost 16 pin QFN plastic package.

Absolute Maximum Ratings⁽¹⁾

Parameter	Absolute Maximum	Units
Positive DC Supply	10	V
RF Input Power	23	dBm
Supply current	100	mA
Operating Temperature	-55 to +85	°C
Storage Temperature	-65 to +150	°C

1. Operation beyond these limits may cause permanent damage to the component

Electrical Specifications ⁽¹⁾ @ $T_A = 25 \text{ °C}, Z_o = 50 \Omega$ Vdd = +5V, Vg1 = -0.4V, Vg2 = +2V

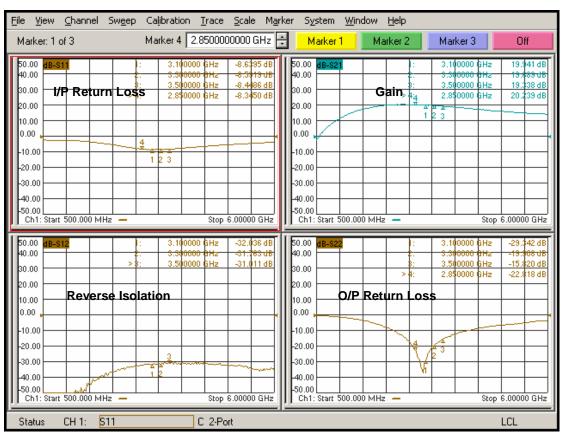
Parameter	Min.	Тур.	Max.	Units
Frequency	1.0	-	6	GHz
RF Performance between 2.5-4 GHz unle	ss otherw	vise state	ed:	
Gain	17	18	20	dB
Gain Flatness	-	± 0.5	± 0.7	dB
Noise Figure	0.6	0.7	0.9	dB
Input Return Loss	-5	-8	-	dB
Output Return Loss	-8	-15	-	dB
Reverse Isolation	-	-31	-	dB
Output Power (P1dB) @ 3.3 GHz	+10	+13	-	dBm
Output Third Order Intercept(IP3) ⁽²⁾	-	30	-	dBm
Supply Current ⁽³⁾	30	50	70	mA

Note:

- Electrical specifications as measured in test fixture. 1.
- Estimated value. 2.
- Supply current tunable with gate bias (Vg1) with minor variation in performance. 3.
- I/O Match can be improved in the required band with stub matching. 4.

Test fixture data

Vdd = +5V, Vg1 = -0.4V, Vg2 = +2V, Total Current = 50mA, $T_A = 25$ °C


🔆 Agil	lent 1	.3:17:0%) Dec	4,200	3					[Frequency
Meas	suren	ient	Point	s 18							
		4	lkr1 lkr2	2 2.5	GHz GHz		0.561 0.546			.738 dB .664 dB	Points 18
		٢	lkr3 lkr4	3	GHz GHz		0.618 0.799	dB	18	.995 dB .179 dB	
9.000											Full Span
NFIG											
Scale/ 1.000											Freq List•
dB		1	2	8				4		_	
-1.000		\$	\$								
40.00											
40.00											
GAIN Scale/			2 \$	 ♦				4			
5.000 dB	Ž										
uD.											
-10.00											More
Start 1 Tcold 2			BW 4 Avgs			°oints 1∶ }tt 0∕0		Stop Loss	6.5000 Off	0 GHz Corr	2 of 2

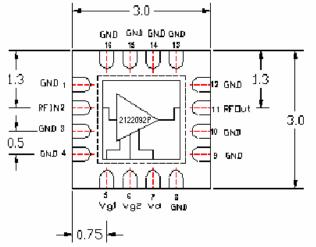
Noise Figure

Test fixture data

Vdd = +5V, Vg1 = -0.4V, Vg2 = +2V, Total Current = 50mA, $T_A = 25 \degree C$

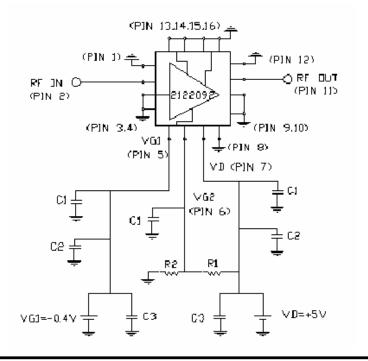
RF Performance

Test fixture data


Vdd = +5V, Vg1 = -0.4V, Vg2 = +2V, Total Current = 50mA, $T_A = 25 \degree C$

Eile	⊻iew	⊆han	nel Sv							r S <u>v</u> stem	n <u>W</u> indo	w <u>H</u> elp			
Marl	ker: 1 o	f3			Mark	.er 2 -3.	764 dB	m	•	Marke	e 1	Marker 2	Mark	er 3	Off
S21 10.0	OdB/ IdB La		50.00	dB-S2	21							1: > 2:)0 dBm 10 dBm	18.987 dB 17.929 dB
0.00		/gm	40.00										14d	Bm	
			30.00				+						144		
			20.00	<u> </u>	+		+	_							<u>}</u>
			10.00		_			_							
			0.00	-	_			_							
			-10.00		_			_							
			-20.00		_		-	_							
			-30.00												
			40.00												
			-50.00 Ch1:	: Start -	-20.0	00 dBm								Stop -	2.0000 dBm
Stal	tus	CH 1:	, \$21				C Resp	ionse							LCL

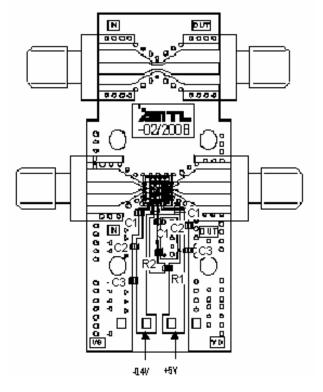
Gain compression at 3.3 GHz


Mechanical Characteristics (16 Pin 3mmx 3mm x 1mm QFN Package)

Pin Configuration

PIN	Function	Description
1,3,4,8,9,10,12,13,14,15,16	GND	Ground
2	RF In	RF Input
5	Vg1	1 st Gate Voltage Input
6	Vg2	2 nd Gate Voltage Input
7	Vdd	Drain Voltage Input
11	RF Out	RF output

Application Circuit



Note :

- 1. R1=15K, R2=10K
- 2. C1=470pF
- 3. C2=0.1uF
- 4. C3=1uF

Evaluation PCB

List of Components

Component ID	Value	Description / Part No.			
C1	470 pF	1 st Bypass capacitor (0402Pkg)			
C2	0.1 uF	2 nd Bypass Capacitor (0402 Pkg.)			
C3	1uF	2 nd Bypass Capacitor (0402 Pkg.)			
R1	15K Ohm	Resistor in VG2 Bias network (0402 Pkg.)			
R2	10K Ohm	Resistor in VG2 Bias network (0402 Pkg.)			
Board Material : RT/Duroid 5880, 10mil					

Note:

- 1. Input and Output Lines should be of 50Ω I mpedance.
- 2. Sufficient numbers of via holes should be provided for good grounding.
- 3. Vg2 can be applied independently without using R1 & R2 and tuned.
- 4. All capacitors shown in the assembly diagram are multi-layer capacitors.
- 5. Evaluation PCB is available from AMTL upon request.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice